a2 United States Patent

US008869052B2

(10) Patent No.: US 8,869,052 B2

Dattke 45) Date of Patent: Oct. 21,2014
(54) CONTEXT-DEPENDENT OBJECT TYPES IN ;,ilé,gig g% : lggggg g}illboa e ;(l)gggé
K A asman et al. ..
AN INTEGRATED DEVELOPMENT 7,574,689 B2*  8/2009 Igelbrink et al. ... ... 717/100
7,620,908 B2* 11/2009 Klevenzetal. .............. 715/781
ENVIRONMENT
7,636,890 B2* 12/2009 Marcjan et al. .. 715/741
(75) Inventor: Rainer Andreas Dattke, Bruchsal (DE) 7,650,644 B2* 1/2010 Chengetal. .. 726/27
7,681,176 B2* 3/2010 Willsetal. .. 717/109
H . 7,716,681 B2* 5/2010 Hackmann ..... .. 719/316
(73)  Assignee: SAP SE, Walldorf (DE) 7,873,908 B1* 1/2011 Varanasietal. ........... 715/763
. . . . . 7,941,438 B2* 5/2011 Molina-Moreno et al. ... 707/756
(*) Notice: Subject to any disclaimer, the term of this ued
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 958 days. OTHER PUBLICATIONS
(21) Appl. No.: 12/957,123 The GUISurfer Tool: Towards a Language Independent Approach to
Reverse Engineering GUI Code—Jodo Carlos Silva, Carlos Silva,
(22) Filed: Nov. 30, 2010 Rui Gongalo, Jodo Saraiva, José Creissac Campos—Departamento
de Informatica/CCTC Universidade do Minho, Braga, Portugal—
(65) Prior Publication Data Departamento de Tecnologia Instituto Politécnico, Barcelos, Portu-
gal—FEICS’10, Jun. 19-23, 2010.*
US 2012/0137268 Al May 31, 2012
(Continued)
(51) Int.ClL
GOGF 3/048 (2013.01) Primary Examiner — Lewis A Bullock, Jr.
GO6F 9/44 (2006.01) Assistant Examiner — Francisco Aponte
GO6F 3/0481 (2013.01) (74) Attorney, Agent, or Firm — Schwegman Lundberg &
(52) US.CL Woessner, P.A.
CPC .. GO6F 8/33 (2013.01); GO6F 8/38 (2013.01);
GOGF 3/0481 (2013.01)  (57) ABSTRACT
USPC oo 715/763; 715/762;717/109 A method is provided to display indicia of an object type for
(58) Field of Classification Search a service within a user interface of a software development
CPC ...cceeee. GOGF 8/34; GO6F 8/38; GOG6F 3/0481 system that runs on a computer, the method comprising:
USPC ARSI 717/1017178, 71 5/200-867 Obtainjng runtime context information that includes an iden-
See application file for complete search history. tification of a respective service and an indication of a user
. role; providing a plurality of corresponding object types;
(56) References Cited using context dependent rules to determine which respective

U.S. PATENT DOCUMENTS

5,794,001 A * 8/1998 Maloneetal. ................ 715/762
7,039,875 B2* 5/2006 Khalfayetal. ... 715/762
7,353,237 B2* 4/2008 Birkenhaueretal. ... 1/1

User I
102
Starts the IDE, opens
ageneral view (6.9.,
Browser or Explorer
View)

1108

1104 1105\ £-Fiaurs 13
Requests all available Evaluates s
(visible) object types context existing ype

object types are within scope of a service; and generating a
user interface that includes respective indicia of respective
object types determined to be within the scope of the service.

13 Claims, 15 Drawing Sheets

| Object Type Provider

specifications, user
authorities for activity

current setfings, system

T
1
|
|
!
1 | 'DISPLAY', usar role,
'
1
d

configuration, tc.) and
Bulldsfgenerates screan| 4] retums available object
thereby integrating the 1| types
avallable abject typas) H
LN TTTTETTETETTTT -
Calls a menu for an 112
object type (or an - 1114 Figure 14
objectof this type) ™| Requests available [l E\ -- 2 =
on the screen operations for : ) :
salacted object (or [~~u| Evaluates runtime !
object typs) 1| oontedt object type
user 1
| authorities, userrote, |
118 1| cument settings, object | 1
" state, efe.) and retums | |
Builds/Generatos 1| available operations '
specific menu : H
me~ T TTTTmmTEmmTTt

Selects an operation

on the object type (or 120

on an object of this [~ | Requests
type) appropriate tool for 122 Figure 15
the selected \; """ - Lo )
operation and type 4 Loads and retums :
1| proper tool according :
14 1| totype specification H
1 |

Invokes ool to process

the operation



US 8,869,052 B2

Page 2
(56) References Cited 2012/0029661 Al* 2/2012 Jonesetal. .......ccccoon..... 700/17
2012/0041570 Al* 2/2012 Jonesetal. .......cccooon..n.. 700/17
U.S. PATENT DOCUMENTS OTHER PUBLICATIONS
3k
2’84212’(1);‘3 g% % 18;38}} gérl:g cztral. """""""""" ;};;}gg JWalk: A tool for lazy, systematic testing of java classes by design
8230336 B2+ 72012 Morlili)ll 715261 introspection and user interaction—Anthony J.H. Simons—Depart-
8:381:306 B2* 2/2013 McPherson et al. L T726/27 ment of Computer Science, University of Sheffield, Sheffield,
2003/0227482 Al* 12/2003 Bachetal. ... . 345/762 UK—Sep. 8, 2007.*
2005/0235251 Al* 10/2005 Arendetal. ............ 717/104
2009/0164980 Al* 6/2009 Rossmann et al. ............ 717/128 * cited by examiner



K

(d0T3IA3G ™S 108lqo uonezuoyine) sabueyd ayew of PaZUOYINE jou ale NOA [A]

US 8,869,052 B2

Sheet 1 of 15

Oct. 21, 2014

<> \ ————

XY oves A

X|) ones A

s A
[eul [A]
(Wun dvay) ssepi1saL O SPElgOsaL L) 4
ssejo Juaisisiad O o p

ssej0 abessapy ym[] Aieiqrysse;y [J a

ssejQ uopdaox3 O |PA0Ed POPPEqUI [ ¢
SSE[) 4V [ensn @ ONd WWLSTL[J a

SN alweN 19990
IS ENEDLES
uoyequElsy| OMd WWLS3L]
uonduasag abexoe ]
)

01g saojuiag aspdiauz 88 |

Jasmolg Jnsay D1y x\,_
wajsAg uonewou| Aoysoday @.E
1asmoug Aloysoday =]

U.S. Patent




US 8,869,052 B2

Sheet 2 of 15

Oct. 21, 2014

U.S. Patent

VIATUIVE

<« » "ADOD [y [ ] < »

1O

uopey < 3881 [INX H3SN 909 ATYS 10D
aslenoy | 3d13H LS008 AWS 10 ]

)

buni|

“IN3S3Hd 909 AvS 1000

osbun

& Redsia | xuoLov4 008 VS 10D
abuety | TWX YLYQ 908 ATYS 10 J

373 W04 909 AvS 1000

Bunis| ¢ ajealn |<._.<QIN_OIOOmI>|_<WI._O_U

UOA USIOLIBAUOY N} assepysiseq
Bw uoyeInbijuod ul siols jo 6o

ILN ANOO 908 ATv¥S 10 W
d1314 ANOD 908 ATv¥S 100J
W3 9I1ANCO D08 AMVS 10T

A A A A A A AAAAa

Sasse|) by a

uonduosaq

awen 198lqo

=) ([E) =)&) _«_@__‘_ <=

(L] all 908 AIVS |
_b abeyoed _




US 8,869,052 B2

Sheet 3 of 15

Oct. 21, 2014

U.S. Patent

ac¢

ainbi4

(d0T13A3a"S 108lqo uoezuoyne) sebueyd axew o} pszioyne Jou aie noA [A]

<)

4 L

| < )

-

uojjeLLIoju) aydsyizedsieznueg| d TWX ¥ISN 908 AT¥S 10LJ <

Buissaooid | S 10} 18d|9H

¥3d713H LS008 ATYS 100 «

Bunisususg JNX uonejussald [AX INISIUd 908 ATVS 10L] <
osbunyejse9) Jn} Juawnyog-TNX [FINI T3 WHO4 909 ATVS 10LJ <

Aiojoe4 ©04g sulauably

AYOLIVY4 908 ATVS 100] <




U.S. Patent

Figure 3

A& 88 SECE TESTOBJECTS

» (1 Package Interfaces
w (7 Embedded Packages

Oct. 21, 2014 Sheet 4 of 15 US 8,869,052 B2
&% Repository Browser
| Package v|
[ SECE_TESTOBJECTS [| ] é&r~|
CLELIEIE)EEIE)!
Object Name Description

Testobjekte in aust

» (CJSABAP_TESTOBJECTS
» (ISACC_HOME

» (3SAK_DEMO_ADDR_01

» (1SAK_DEMO_ADDR_02
(1SDDIC_TESTOBJECTS2
(7 SDKOM_UNSWITCHED
(1 SEXIT_TESTOBJECTS
(3 SMYENHPACKAGE
C1SRDTEST4
[1SWB_CARTOOL_DEMO

VVVvVVVeWVY

Testobjects
accessibility HOME]
demo
demo
DDIC:testobjekte fi
Unswitched packag
NWNY_AP7

test

test

Demo-Tools fiir die

» (CJBusiness Engineering
» [ Dictionary Objects
¥ N Class Library

» (JClasses
» (Jlinterfaces

» (JPrograms

» (IFunction Groups

» (Jincludes

» (3Web Dynpro

» (IBSP Library

» (JEnterprise Services

» (I Transactions

» (I Dialog Modules

» (Llogical Databases

» (JSET/GET Parameters
» (IMessage Classes

» (CIForm Objects

» (3 Switch Framework Objects
» (T Test Objects

» (3 Authorization Objs

P [ Selection Views

P [C1Enkaneements o
RT3 Check Configurations »
» JITS Services = ~

» (I Classifications

» (3 Shared Objects Area Classes




U.S. Patent Oct. 21, 2014 Sheet 5 of 15 US 8,869,052 B2

&2 Repository Browser

Package |v
Package [ »]ér]

Program

Function group | |
d Heldee

Check Configuration

¥ Y SECE_TESTOBJECTS

» (7 Package Interfaces

» (J Embedded Packages

» (7 Ricinace Enningaring

lf—\

Figure 4

Ie?e. Repository Browser

| Check Configuration [+ ]

[SSHMO3 ILv &
ELEPLIEE) EEIE) )

Object Name De
» (I SSHMO3

Figure 5



U.S. Patent Oct. 21, 2014 Sheet 6 of 15 US 8,869,052 B2

Ie?a Repository Browser

| Package [+ |
[ TESTMM_PKG [ w]ér]

ELIELHIER)IEEIR) (]
Object Name
v !'[ ; TESTMM_PKG
w &Y Class Library
» (3 Classes

vy O Check Configurations
» (3 SSHMO3

Figure 6

i,_r.'i’e, Repository Browser

[ Package | v |

[ TESTMM_PKG IR
ELELIFEER)EEIE) (=)
Object Name:

[# [ 1ESTMM_PRG
w &Y Class Library
» (7 Classes




US 8,869,052 B2

Sheet 7 of 15

Oct. 21, 2014

U.S. Patent

g ainbi-

Buliesuibug ssauisng
Juswaoueyug
\ uoneinbiyuo) ¥oayo
freiqry dsg

90IMeg asudioug

Kreigr] ssejn

Joslqo Ateuogoig

oiduhg gem

dnoig uonoun4

welboig

uoyeulpioo? juswdojens(

] ERINESS
< suopoun4 Jayjo
JsI1 pasn-aiaym

Aiu3 podsuel] aip

Aiu3g Aiojoang 1osiqo Aejdsig

< LTy
8189

~fdop

<4 Aeydsig
abueyn

2105 Aeiqrysse|d LJ <
Hd NALSIL N

uonduosag alueN J0slqQ |
)G EE RIS
[BTall ONMd WINLS3L |
_ N _ ommv_omﬂ
lasmoig Aiojisoday =&




US 8,869,052 B2

Sheet 8 of 15

Oct. 21, 2014

U.S. Patent

6 8Inbi4

<

Buuesuibuz ssouisng

Juswsaoueyug
|||||| -

——— - - ]

freiqr1 459

90188 asidisiug

Keigr sse|n

108lq0 Areuopoig

osduAg Gom

dnolg uonoung

weiboid

uofjeulpioo) juswdojersg

SeINIBS

suonoun4 Jaylo
}SI7 pasn-eIaym

Aijug podsuel] sjUp
Au3 Aioyoanq 108lqo Aeidsig

PRIy

SEETg]
kdon

feidsig
abueyn

uonduosaq

Areiqr ssejy CJ 4

aweN Jo8lqo

®)IEEE IO

21N

O)d WWLS3L |

[4]

mmmv_omn:

Jasmoig Alojisoday 28




US 8,869,052 B2

Sheet 9 of 15

Oct. 21, 2014

U.S. Patent

0} @inbi4

< ﬁom.ao w04 4 mmo_am.ww
< Buussuibug sssuisng | ¢ suoyoung 8o
< - - ~USLHIEHTF | 1SN Ume.un”zm_._>>
b — - — = ~ — fielgrSe- Anu3 podsuel} ajup
aoInag asudisjug A3z Lopainq 1siqo Aejdsig

< Kieigry ssefy < 084D
< 1algo Aeuonoig ajejeQ
| osdufg gap Adon
dnoi5y uoiouny < Aeidsiqg

weibord abueyn

< uopeulpioo) juswdojensg

uonduosaq

Aeiqry sselg [J 4

Od WN1S31 w PN

aweN 1o8lqo

@) @ BE RN

[/ ]|

OMd WWLS3L |

[+ ]

abexyoed _

lasmoig Aioysodey =2




U.S. Patent

Oct. 21, 2014

Starts the IDE, opens
a general view (e.g.,
Browser or Explorer
View)

1110\

Calls a menu for an
object type (or an
object of this type)
on the screen

1118\

Selects an operation
on the object type (or
on an object of this

type)

T~

Sheet 10 of 15 US 8,869,052 B2
IDE | Object Type Provider

1104 ~ 11()6\r [Figure13
Requests all available ! — !
(Vsible) object types \L context (existing type :
| specifications, user !
1 | authorities for activity i
: ‘DISPLAY’, user role, |
1108 ~N 1 | current settings, system | |
: ! | configuration, efc)and ||
Builds/generates screen| ,_~-] returns available object | |
thereby integrating the t | types |
available object types) : !

1112\

Requests available
operations for
selected object (or
object type)

1116\

Builds/Generates
specific menu

1120\

Requests
appropriate tool for
the selected
operation and type

1124\

Invokes tool to process
the operation

Figure 11

Evaluates runtime
context (object type
specification, user
authorities, user role,
current settings, object
state, etc.) and returns
available operations

Loads and returns
proper tool according
to type specification

s rgure 15



U.S. Patent

Oct. 21, 2014 Sheet 11 of 15

Header Data (Formal Data) |

OBJTYPE_REGISTRY

US 8,869,052 B2

To
Figure 12B
(

INCON_ID

OBJECTTYPE

Al_VERSION
OBJECTTYPE_CATEGORY
(PARENT_OBJECTTYPE)
OBJECTNAME_MAXLENGTH
EDATE efc.

/
(

o O O

1

]1.*
OBJTYPE_TEXTS

OBJECTTYPE

Al_VERSION

LANGUAGE
OBJECTTYPE_NAME
OBJECTTYPE_NAME_PLURAL
(OBJECTTYPE_SHORTNAME)
DESCRIPTION

Scopes

OBJTYPE_SCOPES

OBJECTTYPE
Ai_VERSION
SCOPE

(PROCESSOR_TOOL)

Q1

1 1.

OBJTYPES_SCOPES_REQUIREMENTS

OBJECTTYPE
Al_VERSION

SCOPE
REQUIREMENT
REQ_QUALIFICATION

/

Figure 12A



U.S. Patent Oct. 21, 2014 Sheet 12 of 15 US 8,869,052 B2

From
Figure 12A
—
f—
Positioning (e.g., on the Ul |
L. OBJTYPE_POSITIONS
OBJECTTYPE
Al_VERSION
POSITION
Q1
11.*
OBJTYPE_POSITIONS_REQUREMENTS
OBJECTTYPE
Al_VERSION
POSITION
REQUIREMENT
REQ_QUALIFICATION
Functions |
1. OBJTYPE_FUNCTIONS
OBJECTTYPE
Al VERSION
FUNCTION
PROCESSOR_TOOL
Q1
11"
OBJTYPE_FUNCTIONS_REQUREMENTS
OBJECTTYPE
Al VERSION
FUNCTION
REQUIREMENT
REQ_QUALIFICATION

Figure 12B



U.S. Patent Oct. 21, 2014 Sheet 13 of 15 US 8,869,052 B2

1304
{ 1302

Select Object Type To Identify Context-
Dependent Scope Conditions

Object Types
DB

v Ve 1306
Access Context Information To Obtain
Context Data Required To Evaluate
Context-Dependent Scope Conditions

Context
Information

l

1310 A

Evaluate Context-
Conditions To Determine If
Within Scope?

No

Y

/1316

Return
Default
Display

Y

Display Rulg?

/-1314

Return Special Display
Presentation

Figure 13



U.S. Patent Oct. 21, 2014

13042

Sheet 14 of 15 US 8,869,052 B2

e 1402

Object Types —»

DB

Access Menu Object Type To Identify
Context-Dependent Conditions

——— e’

l ‘e 1404

13085

Context |—
Information

Access Context To Obtain Context
Data Required To Evaluate Context-
Dependent Menu Display Conditions

N ——”’

‘ - 1406

Evaluate Availability Of Each Menu
Operation Based Upon Context
Condition For That Menu Operation
And Determine Display Presentation

; 1408

Return Availability And Display
For Each Menu Operation

Figure 14

1304

Vs 1502

Object Types
DB

Access Object Type To Identify
Processor Tool To Implement

y Ve 1504

Return Processor Tool Type

Figure 15



U.S. Patent Oct. 21, 2014 Sheet 15 of 15 US 8,869,052 B2

'/ 1600
1602~ AN 1610
Processor
< > T > Video Display
1624 — Instructions
1604~ 1608 1612
Main M
ey -« I »| Alpha-Numeric
1624 -4 Instructions Input Device
1606~ 1614
Static Memory o
- > | »| Ul Navigation
1624 - Instructions Device
[9p]
jan )
om
1620~ 1616
Drive Unit
Network yo—
"SZU@ZG ) 11 "Il Readable [] 1622
Medium
H Instructions H-—1624
| 1618
1626 /-
Signal
< > Generation
Device

N
Figure 16



US 8,869,052 B2

1

CONTEXT-DEPENDENT OBJECT TYPES IN
AN INTEGRATED DEVELOPMENT
ENVIRONMENT

BACKGROUND

Integrated development environment (IDE) applications
abstract the computer programming complexities and reduce
software applications development time so as to enhance the
productivity. An IDE allows a developer to concentrate more
on the functionality of the application that is being created
rather than concentrating on the writing code. An IDE may
include a variety of components such as a source code editor,
acompiler or interpreter, build automation tools, and a debug-
ger and tools to build an executable, for example. Versioning
control may be included to assist computer programmers
manage the history of the development objects, e.g. source
code. An IDE for object-oriented programming (OOP) often
includes a class browser, tools to produce class hierarchy
diagrams, and an object inspector, for example. An IDE can
assist a developer in developing applications by allowing him
to easily drag and drop objects onto a ‘form’or onto a ‘canvas’
of the application that is under development. Thus, a devel-
oper may be required to write fewer lines of code, which
reduces the time required to create an application. An IDE
may combine several editor tools, each tool tailored to pro-
cess objects of a specific type. State-of-the-art IDEs often
provide plug-in options which allow users or commercial
developers to integrate external tools and new object types.

However, not all of tools, object types and operations are
intended to be used by anybody, anywhere. Depending upon
user authorizations, user role, system configuration, client-
specific customizing and other context information, access to
certain types and operations and tools may be forbidden or
restricted. FIGS. 1 and 2A-2B provide illustrative examples
of user interfaces that are not especially well matched to the
particular context in which they are used.

FIG. 1 is an illustrative drawing of a user interface screen
display indicating that a user lacks authorization to ‘Save’ a
class object. In this example, the user interface screen display
is part of an object editor (software) tool that requires a user
to have authorization to use it. Unfortunately, in this example,
an authority check is implemented in the actual tool, and a
restriction is not evident until the user tries to call the tool or
worse, until the user tries to complete an already initiated
operation. Specifically, in this example, the user called a
function on the object type ‘class’. The user seeks to create a
new class object type named ‘CL._ 0815°. In this example,
only after the user has entered the object name and perhaps
other information relating to the new class object and then
selects ‘Save’, does a notification pop up to indicate that the
user lacks authorization to create the new class object. Thus,
the user’s prior efforts to create a new class object are for
naught, which is frustrating to the user. From a usability
standpoint, this user interface behavior is quite poor because
the authority restrictions are communicated too late.

FIGS. 2A-2B are illustrative drawings of user interface
screen displays that include a menu (FIG. 2A) that offers a
‘Change’ operation and a warning (FIG. 2B) indicating that
the ‘Change’ operation is not authorized. In this example, the
user does not learn that he is not authorized to use the
‘Change’ operation until after he has selected it. User inter-
face behavior is disappointing because authority restrictions
are communicated to late.

FIG. 3 is an illustrative drawing of a user interface screen
display showing a package list collection of object types
contained within a ‘Package’, in which the ‘Check Configu-

20

25

30

35

40

45

55

60

2

ration’ object type is not prominently displayed. The example
package list is hierarchical. The root object type is ‘Package’,
and the ‘Check Configuration® object type is at the same
hierarchy level as many other object types below the root. A
certain object type or operation can be of particular impor-
tance for some users, roles or authorization groups, but not for
others or it can be of high relevance in a certain system
configuration or in a specific instance (client/tenant) of the
system, but not in another system context or system instance.
For users in some roles such as quality manager, for example,
the ‘Check Configuration” object type may be more impor-
tant, and for ease of use it may be more convenient to such
users to display that object type more prominently.

With the increasing complexity of IDEs, there has been a
need for improvement in the ability to flexibly generate dif-
ferent user interface displays for use within an IDE that sup-
port differences in the availability and prominence of the
displays of different object types and operations to different
users in different situations.

SUMMARY

In one aspect, a method is provided to display indicia of an
object type for a service within a user interface of a software
development system. In another aspect, a method is provided
to display a user interface menu within a user interface of a
software development system. In yet another aspect, a
method is provided to display indicia of an object type within
a hierarchical user interface of a software development sys-
tem. Runtime context information is used in concert with
information structures in computer readable storage device
that indicate context information dependent rules to deter-
mine a display to be generated. A user interface display is
generated consistent with the runtime context and context
dependent rules.

These and other features and advantages will be under-
stood from the following detailed description of embodi-
ments in conjunction with the appended drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustrative drawing of a user interface screen
display indicating that a user lacks authorization to ‘Save’
class object.

FIGS. 2A-2B are illustrative drawings of user interface
screen displays that include a menu (FIG. 2A) that offers a
‘Change’ operation and a warning (FIG. 2B) indicating that
the ‘Change’ operation is not authorized.

FIG. 3 is an illustrative drawing of a user interface screen
display showing a package list, a collection of object types
contained within a package, in which the ‘Check Configura-
tion’ object type is not prominently displayed in accordance
with some embodiments.

FIGS. 4-7 are illustrative drawings of user interface screen
displays showing variations of the display of a ‘Check Con-
figuration’ object type dependent upon user role in accor-
dance with some embodiments.

FIGS. 8-10 are illustrative drawings of user interface menu
screen displays showing variations of the display of an offer-
ing of the ‘Create’ operation dependent upon user role in
accordance with some embodiments.

FIG. 11 is an illustrative flow diagram representing inter-
action between a user, an integrated development environ-
ment (IDE) and an object type provider (OTP) in accordance
with some embodiments.



US 8,869,052 B2

3

FIGS. 12A-12B provide an illustrative drawing of an
object type data model information structure in accordance
with some embodiments.

FIG. 13 is an illustrative flow diagram showing details of a
first OTP process in accordance with some embodiments.

FIG. 14 is an illustrative flow diagram showing details of a
second OTP process in accordance with some embodiments.

FIG. 15 is an illustrative flow diagram showing details of a
third OTP process in accordance with some embodiments.

FIG. 16 is a block diagram of a computer processing sys-
tem within which a set of instructions, for causing the com-
puter to perform any one or more of the methodologies dis-
cussed herein, may be executed.

DESCRIPTION OF EMBODIMENTS

The following description is presented to enable any per-
son skilled in the art to create and use a computer system
configuration and related method and article of manufacture
to enable different object types, object type operations and
object type display presentations within different contexts.
Various modifications to the preferred embodiments will be
readily apparent to those skilled in the art, and the generic
principles defined herein may be applied to other embodi-
ments and applications without departing from the spirit and
scope of the invention. Moreover, in the following descrip-
tion, numerous details are set forth for the purpose of expla-
nation. However, one of ordinary skill in the art will realize
that the invention might be practiced without the use of these
specific details. In other instances, well-known structures and
processes are shown in block diagram form in order not to
obscure the description of the invention with unnecessary
detail. Thus, the present invention is not intended to be limited
to the embodiments shown, but is to be accorded the widest
scope consistent with the principles and features disclosed
herein.

Introduction

In accordance with some embodiments, object types are
comprehensively specified at design time. An object type
specification designates applicable functional scope and
operations, as well as requirements to access operations on an
object type. An object type specification also may include
options and conditions for displaying on the UI.

At runtime, the IDE uses the object type specifications in
conjunction with runtime context information (e.g., system,
client, user profile, object state) to determine the availability
of'objecttypes, specific objects and operations. The availabil-
ity is checked before those entities (types, objects, and opera-
tions) are presented on screens or in menus. Based upon the
availability of object types, objects and operations, the IDE
flexibly and dynamically generates situation-specific screens
and menus. Generation of user interface displays once a deter-
mination of object types or elements to be represented in the
user interface is well known to persons skilled in the art and is
not described in detail herein.

Example User Interface Screen Displays

FIGS. 4-7 are illustrative drawings of user interface screen
displays showing variations of the display of a ‘Check Con-
figuration” object type dependent upon user role in accor-
dance with some embodiments. The screen display of FIG. 4
is presented to users in the quality manager role in which the
Check Configuration object type is presented not only as an
element of the package list, but also within a top-level root of
independent object lists in the hierarchy of object types. The
Check Configuration object type is highlighted signifying
that the user, a quality manager, has selected this object type
from a dropdown list box. FIG. 5 shows the screen display

20

25

30

35

40

45

50

55

60

65

4

that is generated in response to a user’s selection of Check
Configuration in FIG. 4, in which Check Configurationis ata
root level of the object hierarchy. The screen display of FIG.
6 is presented to users in the developer role for whom the
Check Configuration object type is not as important. Conse-
quently, the Check Configuration object type is displayed less
prominently, lower in the hierarchy, underneath the package
node, which serves as a root in this user interface object
hierarchy. The screen display of FIG. 7 is presented to users in
the customer role who do not have authorization to use the
Check Configuration object type, which is omitted from the
screen display as represented by the dashed lines enclosing an
empty region.

FIGS. 8-10 are illustrative drawings of user interface menu
screen displays showing variations of the display of an offer-
ing of the ‘Create’ operation dependent upon user role in
accordance with some embodiments. The menu of screen
display of FIG. 8 shows that for users in the quality manager
role, a menu display is generated in which the Create opera-
tion is available for use with the Check Configuration object
type. The menu of screen display of FIG. 9 shows that for
users in the developer role, a menu display is generated in
which the Create operation is visible but disabled, indicated
by the dimmed/grayed out word within the dashed lines. The
menu of screen display of FIG. 10 shows that for users in the
customer role, a menu display is generated in which the
Create operation is not available and not visible but disabled,
indicated by the empty region within the dashed lines.
Process Overview

Object type definitions are provided that set forth runtime
context dependent rules for the use of object types in an IDE.
Runtime criteria may include user role, system configuration,
user authority for a particular operation, for example. FIG. 11
is an illustrative flow diagram representing interaction
between a user, an integrated development environment
(IDE) and an object type provider (OTP) in accordance with
some embodiments. The OTP acts as an interface between the
IDE and the object type definitions. But the Object Type
Provider is more than a simple API (‘Application Program-
ming Interface’); it also evaluates the dynamic availability
and significance of the individual object types by accounting
for the complex runtime situation. A machine is configured
according to program code to act as an IDE that is responsive
to user commands. The machine is further configured accord-
ing to program code to act as an object type provider that is
responsive to the IDE. It will be appreciated that although the
OTP and IDE are shown as separate components, the OTP
may be implemented as integral with the IDE.

A characteristic of an IDE is that it provides an infrastruc-
ture, in general a set of services, which eases the development
process and supports the user. These services refer to ‘func-
tional scopes’ such as ‘Active/Inactive Handling’, ‘Version
Management’, “Transport Management’, ‘Where-used list’.
Functional scopes are rather coarse-grained entities, whereas
the operations (or ‘functions’) are rather fine-grained entities:
For example, the functional scope ‘Version Management’
includes operations such as ‘Display version’, ‘Compare ver-
sions’, ‘Retrieve version’. Object type definitions specify to
which of the services or functional scopes an object type may
be associated, and which of the operations may be applicable
to the object type.

An OTP is programmatically integrated at many locations
in the source code of the IDE, these locations representing
‘functional scopes’. Then, at runtime, the OTP dynamically
determines the availability, visibility and Ul presentations of
the object types, objects and operations. These determina-
tions depend upon context information indicative of the cur-



US 8,869,052 B2

5

rent (dynamic) situation, e.g., user profile, user authoriza-
tions, system or client customizing and settings (e.g., switch
settings), object state (locked, saved, active/inactive), hard-
ware or software parameters, backend engine, etc. With the
aid of the OTP, the IDE generates menus and screens.

At runtime, the process of FIG. 11 evaluates pre-defined
object type definitions in view of runtime context information
to determine the availability of object types, operations that
can be performed on those object types and the position of
visible indicia of those object types in a display screen. Inuser
block 1102, a user requests to start the IDE and opens a
general view or display screen, e.g. a browser view. In
response to the user request, IDE block 1104 requests from
the OTP all available (i.e. visible) object types. In response to
the IDE request, OTP block 1106 evaluates runtime context
(e.g., object type specifications; user authorities for the activ-
ity ‘DISPLAY’; user role; system configuration; etc.) and
returns the available object types. IDE block 1108 generates
auser interface screen that displays indicia of the object types
available to the user. In user block 1110, the user requests a
menu for an object type shown on the screen display. In
response to the user request, IDE block 1112 requests from
the OTP available operations for the selected object type. In
response to the IDE, OTP block 1114 evaluates runtime con-
text (e.g., object type specification; user authorities; user role;
object state; etc.) and returns available operations. IDE block
1116 generates the specific menu using the returned opera-
tions. In user block 1118, the user selects an operation on the
object type. In response to the user request, IDE block 1120
requests from the OTP the appropriate tool for the selected
operation and object type. In response to the IDE request,
OTP block 1122 loads and returns the proper tool according
to the type specification. IDE block 1124 invokes the returned
tool to process the selected operation.

Object Type Data Model Structure

FIGS. 12A-12B provide an illustrative drawing of an
object type data model information structure in accordance
with some embodiments. The illustrative example data model
comprises multiple table structures stored in a computer read-
able storage device. A plurality of object types filed in the
illustrated data model structure are used to generate a context
dependent user interface that provides context dependent
object types and context dependent operations and context
dependent display of indicia (e.g., icons) that visually repre-
sent the object types and operations.

As explained in the following paragraphs, each object type
specification may provide context dependent rules that deter-
mine what shall be referred to herein as a “functional scope’to
which the object type is connected; may provide context
dependent operations that are applicable on the object type;
and may provide context dependent information that deter-
mines where (positioning e.g. within a hierarchy) and how
prominently the object type is to be presented in an output
device, e.g. a user interface display. These object type data
(scope, operations, positioning) may be coupled (as part of an
overall object type specification) to some context-based
requirements or conditions that are checked/evaluated at runt-
ime to determine whether a given object type is within the
scope of the request, to determine which operations are to be
offered, and to determine positioning of indicia of the object
type and the operations offerings within the output.

The example object type data model structure includes an
OBJTYPE_REGISTRY table and an OBJTYPE_TEXTS
table that provide what shall be referred to herein as formal
data that provide general information concerning the object
type and its display. In the illustrated embodiment, the OBJ-
TYPE_REGISTRY structure provides a technical name for

20

25

30

35

40

45

50

55

60

65

6

the object type, which may involve a multi-component key
(e.g., transporttype+subtype), an edit date (EDATE) and iden-
tification of an icon (i.e. pictogram) to act as visual or graphi-
cal indicia of the object in a user interface display screen. In
the illustrated embodiment, the OBJITYPE_TEXTS structure
provides a display name for the object type. In some embodi-
ments, a language-dependent text table is provided that con-
tains the object type name in different languages and charac-
ter sets, in different grammatical cases (e.g., singular and
plural, nominative case, accusative case), and with different
character lengths (to cope with different field lengths on the
UI). The IDE uses these name-related data to generate certain
screen displays and menu displays that incorporate visual
indicia (e.g., an icon representing the object type). In some
embodiments, an object type may be declared to be ‘normal’,
‘abstract” and/or ‘derived’. Moreover, an object type may be
derived from another type (which may be “abstract’ or not). In
order to derive an object type, the ‘parent’ object type must be
named. (Derived data can be ‘redefined’ or ‘overwritten’.)
Furthermore, an object type may belong to a category or class
of object types, or may be part of a type hierarchy.

The OBITYPE_SCOPES table and the OBJTYPES_S-
COPES_REQUIREMENTS table provide first data sets that
provide ‘coarse’ (‘high-level’) rules for control or filtering of
the context-dependent functional scope that is enabled for the
objecttype. The functional scope signifies services or areas or
components of the IDE where an object type may be inte-
grated: ‘Active-/Inactive Handling’, Version Management’,
‘Transport Management’, Where-used list’, etc. A functional
scope also may signify a ‘hidden’ (or ‘dark’) function, such as
‘Automatic Backup’, where objects of the given type are to be
involved but are not directly accessible to the user and may
have no corresponding visual indicia in a UI display. For
example, an object type that is defined to be picked up in the
‘Automatic Backup’job of the IDE. For a common developer,
this batch job has no visibility on the Ul.

Table 1 provides example detailed rules that may be pro-
vided within the OBJTYPE_SCOPES table structure and
within the OBJTYPES_SCOPES_REQUIREMENTS table
structure of FIGS. 12A-12B. Scope requirements informa-
tion provided in the OBJTYPES_SCOPES_REQUIRE-
MENTS table corresponds to information provided in the first
and second columns of Table 1. The first and second columns
of'Table 1 respectively indicate functional scopes in which the
object type may be available and conditions or requirements
for availability within a given functional scope. For example,
referring to the first data-containing row of Table 1, the
example object type is available within the functional scope,
‘Active-/Inactive Handling’, provided that the condition that
the current user is in the ‘Developer’ role is satisfied. In this
example, ‘Active/Inactive Handling’ is a functional scope.
When no requirements are defined for a certain scope (e.g.,
“Transport Management’), then the object type has uncondi-
tioned access to that scope. Processor tool information pro-
vided in the OBJTYPE_SCOPES table corresponds to the
third column of Table 1, which indicates the processor tool
provided within each functional scope. Thus, the example
OBJTYPE_SCOPES table structure and the OBJTYPES_S-
COPES_REQUIREMENTS structure determine the context-
dependent conditions in which a given object type may be
available within a given functional scope and also determine
the processor tool(s) available for use with the object type
within that functional scope.

Note that in the middle column of the Table 1, the
“Required User Role” is one example for a context-dependent
requirement.



US 8,869,052 B2

7 8
TABLE 1 The first and second columns of Table 2 respectively indi-
cate operations that are available and conditions for availabil-
) Required ity. For example, referring to the second, data-containing row
Functional Scope User Role  Processor Tool of Table 2, the example operation, ‘DISPLAY”, is available
Active-/Inactive Handling Developer CL_XTYPE_EDITOR 5 provided that the condition “User has authorization S_DE-
Where-used list / CL_XTYPE_INFOSYST VELOP” is satisfied. (A user role is associated with a distinct
gi:lslg:/rgnqueue Developer CL_XTYPE. EDITOR set of .authortizations. An autl}qrization may refer to an
(Locking) “authority object” and an “activity”. The IDE may check
Logging, History Quality ~ CL_XTYPE_EDITOR whether the current user (in his current role) has the required
o Manager 10 authorization.)
Versioning CL _XTYPE_LM A combination of context-dependent conditions (linked
Upgrade CL_XTYPE_LM . P .
Automatic testing Quality  CL_XTYPE_EDITOR with “AND’ or ‘OR’, or combinations) may be specified for an
Manager operation. Requirements may include user authorization
Customizing Developer CL_XTYPE EDITOR level, hardware parameters or the existence/installation of a
Transport Management CL XTYPE_LM 15 certain backend software engine, for example.
For example, consider the operation ‘EXECUTE’, which
A ‘processor tool’ is the software tool to be called by the means to execute specific objects of the given type. (Example:
runtime environment in order to process the object type in the To ‘execute’ a compiled program means to run the program.)
context of the respective ‘Functional Scope’. A context-dependent rule for the EXECUTE operation may
Typically, a processor tool is decoupled from the IDE 20 involve two requirements specified in an object type specifi-
framework. Upon a request, the IDE framework searches cation:
through some registry to determine the right tool. (For 1.) The user account must have some technical authoriza-
example, in order to display some ‘Graphical Model’ object, tion in the software system, characterized by some authority
the appropriate processor tool will be a ‘Graphical Editor’.) In object ‘S_DEVELOP’ and activity ‘EXECUTE".
the present embodiments described herein, the object type 25  2.) The kernel of the runtime system must be of version
specifications include information on the processor tools; the x.4.1 or higher.
set of object type specifications therefore implicitly estab- Both conditions may be defined and linked with ‘AND” in
lishes a tool registry. In an alternative embodiment, the pro- the object type definition at design time. At runtime, the
cessor tools might be registered separately from the object system will evaluate them. The result is that operation/func-
type specifications. 30 tion ‘EXECUTE’ will be available (e.g. visible and select-
In an object-oriented programming language, such a pro- able) onthe User Interface only if both conditions are fulfilled
cessor tool or editor is a class which implements a certain at runtime.
interface. The runtime environment will call the tool class via Note that in some embodiments, requirements may be
the interface. For any ‘Functional Scope’, an individual tool specified as being “mandatory”, or “sufficient”, which is
(or a shared tool) may be registered as processor tool. 35 roughly equivalent to combining requirements with ‘AND’ or
The OBJTYPE_FUNCTIONS and OBJTYPE_FUNC- ‘OR’.
TIONS_REQUIREMENTS tables provide second data sets The third column of Table 2 indicates whether at runtime
that provide rules for ‘finer’ (‘lower-level’) control or filtering indicia of the object type or operation is visible on the user
of context-dependent operations that are enabled for the interface when the context condition is not satisfied and the
object type. The example second data set identifies context- 40 operation is unavailable. For example, indicia of the ‘DIS-
dependent operations associated with the object type and the PLAY” operation is visible even if the ‘DISPLAY” operation
conditions or requirements under which the operations are is unavailable, but indicia of the ‘CREATE’, operation is not
available to be accessed used. Table 2 provides example visible if the ‘CREATE’ operation is unavailable. Note that
detailed information that may be provided within the OBJ- information in the third and fourth columns ‘Display Mode’
TYPE_FUNCTIONS and the OBJTYPE_FUNCTION- 45 and ‘Processor Tool” is not required to determine whether
S_REQUIREMENTS table structures of FIGS. 12A-12B. In condition-dependent operations are available. The ‘Display
some embodiments, a first data set such as that of Table 1 is Mode’ can be defined as a general setting (which holds for any
used to determine whether a given object type is within the operation, or even for any object type); the ‘Processor Tool’
scope of some service, component or area of the IDE for a may already be defined with respect to the ‘Functional
given context. Assuming that the object type is within the 50 Scope’, i.e. on a higher level (so there might be no need to
scope, then a second data set such as that of Table 2 is used to override it here).
determine which operations associated with the object type In Table 2, the second column “Required Authorization™ is
are available for the given context. one example for a context-dependent requirement.
TABLE 2
Required Display Mode
Operation Authorization (if unavailable) Processor Tool
DISPLAY S_DEVELOP Visible but disabled CL_XTYPE_EDITOR
(i.e., not selectable)
CREATE S_DEVELOP Not visible CL_XTYPE_EDITOR
CHANGE S_DEVELOP Not visible CL_XTYPE_EDITOR
ACTIVATE S_DEVELOP Not visible CL_XTYPE_EDITOR
DELETE S_DEVELOP Not visible CL_XTYPE_EDITOR
WHERE_USED  S_DEVELOP Not visible CL_TYPE_INFO
EXECUTE S_FCONSUMER  Not visible CL_XT_PROCESSOR




US 8,869,052 B2

9

The OBJTYPE_POSITIONS and OBJTYPE_POSITION-
S_REQUIREMENTS tables provide third data sets that pro-
vide rules for control or filtering of context-dependent Ul
display presentation (e.g. position) of visible indicia of a
given object type. The example third data set identifies con-
text-dependent object type display presentations and the con-
ditions that determine which presentation is generated. Table
3 provides example detailed information that may be pro-
vided within the OBJTYPE_POSITIONS and the OBIJ-
TYPE_POSITIONS_REQUIREMENTS table structures of
FIGS.12A-12B. The Table 3 example refers to general views,
i.e. views of sets of object types, as shown in ‘Browsers’.
Moreover, positions may be characterized by abstract ‘Lev-
els’, or by technical identifiers (e.g., ‘Root node in Explorer
Tree’). In the Table 3 example, the importance of a certain
object type is relative, since it depends on the role or profile of
auser, or on other parameters. Accordingly, the object type is
to be presented more or less prominently within a set of object
types on the Ul depending upon a user’s role.

In Table 3, the second column “Required User Role” is one
example for a context-dependent requirement.

TABLE 3

Display Position Required User Role

Top Level
Standard Level

Quality Manager
Developer

It will be appreciated that some object types may require
categories of information in addition to that shown in the data
model of the general structure shown in FIGS. 12A-12B in
order to instantiate the object type. For example, the access of
anobject type to ‘functional scope’ Active-/Inactive Handling
may require further, detailed data such as a list of dependent
object types (i.e., objects which have to be activated synchro-
nously with objects of the present type); Activation phase at
runtime where objects of the present type have to be activated
(e.g., ‘Pre-Activation’ or ‘Standard Activation’ or ‘Post-Ac-
tivation’). As another example, access of an object type to
‘functional scope’ Transport Management may require fur-
ther, detailed data such as to indicate whether objects of this
type are to be automatically transported to other systems in
the ‘transport landscape’, or manually transported; to indicate
whether this is a main transport type, or a subordinate trans-
port type (The latter means: Objects of this type are trans-
ported as a part of another object.); and to indicate the ‘trans-
port layer’ in which objects of this type are transported. As yet
another example, access of an object type to ‘functional
scope’ Where-Used list may require further, detailed data
such as which objects (object types) may be used by objects of
the present type and which objects (object types) may use
objects of the present type.

In some embodiments an Object Type Editor tool is pro-
vided to support persons who design object types and object
type specifications. By providing admission control, edit
locks, automatic entry help and entry checks, as well as com-
prehensive checks, an Object Type Editor tool can assure that
object type specifications are consistent, plausible and com-
plete. In general, ‘functional scope’, operations/functions and
Ul positioning for a given object type are interdependent. The
Object Type Editor can check for any conflicts. For example,
an object type which allows operation Transport should have
access to the ‘functional scope’ ‘Transport Management’.
Object types can be comprehensively specified at design
time. Authority checks and other availability checks at runt-

20

25

30

35

40

45

50

55

60

65

10

ime can be delegated from the tools to the ‘Object Type
Provider’. In effect, the object types and tools in the IDE can
be centrally controlled, and the usability of the IDE is
improved. Screens and menus on the User Interface are more
homogeneous.

An alternative object oriented programming approach to
comprehensively specifying scope, operations and/or presen-
tation of an object type is to represent object type specifica-
tions as classes implementing well defined interfaces. At
design time, comprehensive properties of an object type are
written in the source code of such a class. In this alternative
embodiment there is no need for a specific editor tool for
object types.

Example OTP interaction with Object Type
Definitions

Referring again to FIG. 11, additional illustrative details of
the process of block 1106 are shown in FIG. 13. Additional
illustrative details of the process of block 1114 are shown in
FIG. 14. Additional illustrative details of the process of block
F22 are shown in FIG. 15.

More particularly, FIG. 13 is an illustrative flow diagram
showing details of a first OTP process performed in response
to an IDE block 1104 requests for all available (i.e. visible)
object types. It will be understood that a machine may be
configured with program code to implement acts represented
by the illustrative modules of FIG. 13. Inresponse to a request
from the IDE, which is responsive to a user request to start a
service, for example, module 1302 accesses a corresponding
object type definition from an object type definition database
1304, which stores a multiplicity of object type definitions.
Referring to FIGS. 12A-12B, module 1302 uses OBITYP-
E_REGISTRY table information to retrieve the object type
definition. Module 1306 accesses saved context information
1308 to obtain context data that is required to evaluate the
context-dependent scope conditions within the OBITYPE_
SCOPES table and the OBJTYPES_SCOPES_REQUIRE-
MENTS table of the selected object type definition. As
explained below, the context information is not persistently
stored, but rather is saved only temporarily. Decision module
1310 evaluates the context-dependent conditions specified by
the object type definition for the selected object type to deter-
mine whether the selected object is within the scope function.

Note that the object type information in definition database
1304 is persistently stored, whereas the context information
1308 relates to the runtime situation (e.g., system state, date,
time, user role, etc.) which comprises transient data. If deci-
sion module 1310 determines that the selected object type is
within the functional scope, then decision module 1312
evaluates context-dependent conditions specified by OBJ-
TYPE_POSITIONS and OBIJTYPE_POSITIONS_RE-
QUIREMENTS tables of FIGS. 12A-12B in view of context
information to determine whether a special display rule is to
be applied to the selected object type. If decision module
1312 determines that a special display rule is to be applied to
the selected object type, then module 1314 returns the
selected object type and the special display rule to the IDE
module 1108, which integrates the selected object type into
generation of the user interface in accordance with the special
display rule. Referring to Table 3, for example, the special
rule might specity that the object type is to be displayed as the
root node in the tree. If decision module 1312 determines that
no special display rule is to be applied, then module 1316
returns the selected object type and a default display rule to
the IDE module 1108, which integrates the selected object
type into generation of the user interface in accordance with



US 8,869,052 B2

11

the default display rule. Following a determination by deci-
sion module 1310 that the selected object type is not within
the functional scope, a return by module 1314 or a return by
module 1316, whichever the case, decision module 1318
determines whether the last object type has been evaluated for
it’s being within the functional scope. If not, then control
flows back to module 132 and the process repeats. If decision
module 1318 determines that all object types to be evaluated
have been evaluated, then the process ends.

Referring again to FIGS. 4-7, for example, the first OTP
process of FIG. 13 can be used to determine whether and
where a ‘Check Configuration’ object type is incorporated
within a user interface. For the illustrative user interface of
FIG. 4, for example, decision module 1310 would have deter-
mined that the ‘Check Configuration’ object type is within the
functional scope; decision module 1312 would have deter-
mined that a special display rule applies to the ‘Check Con-
figuration’; and module 1314 would have returned to the IDE
indications that the ‘Check Configuration’ object type is to be
displayed according to the special display rule. In the case of
the example user interface of FIG. 4, the special display rule
specified that the ‘Check Configuration’ object type is to be
displayed in a top level of a display hierarchy.

Referring to the user interface display screen of FIG. 6, for
example, decision module 1310 would have determined that
the ‘Check Configuration’ object type is within the functional
scope; decision module 1312 would have determined that no
special display rule applies; and module 1314 would have
returned to the IDE indications that the ‘Check Configura-
tion’ object type is to be displayed according to a default
display rule. Accordingly, the example user interface of FIG.
6, displays the ‘Check Configuration’ object type in a lower
level of a display hierarchy beneath the package node.

Referring to the user interface display screen of FIG. 7, for
example, decision module 1310 would have determined that
the ‘Check Configuration’ object type is within the functional
scope; decision module 1312 would have determined that a
special display rule applies; and module 1314 would have
returned to the IDE indications that the ‘Check Configura-
tion’ object type is to be displayed according to a special
display rule. in this example, the special display rule specifies
that the ‘Check Configuration’ object type is not to be visible
at all in the user interface. Accordingly, the example user
interface of FIG. 6, omits the ‘Check Configuration” object
type altogether.

FIG. 14 is an illustrative flow diagram showing details of a
second OTP process performed in response to an IDE block
1112 requests for available (i.e. visible) menu operations for
a selected object type. It will be understood that a machine
may be configured with program code to implement acts
represented by the illustrative modules of FIG. 14. In
response to a request from the IDE, which is responsive to a
user request for a menu relating to an object type, for
example, module 1402 accesses a corresponding object type
definition from the object type definition database 1304.
Referring to FIGS. 12A-12B, module 1402 uses OBJTYP-
E_REGISTRY table information to retrieve the object type
definition. Module 1404 accesses stored context information
1308 to obtain context data that is required to evaluate the
context-dependent scope conditions within the OBITYPE_
FUNCTIONS table and the OBJTYPES_FUNCTIONS_RE-
QUIREMENTS table of the selected object type definition
for the selected object type to determine which operations
associated with the selected object type are available within
the current context. Module 1406 evaluates the availability of
each menu operation associated with the selected object type
based upon the current context condi-

20

25

30

35

40

45

50

55

60

65

12

tions associated with that operation. Module 1406 also may
evaluate display presentation of the operations. Module 1408
returns to the IDE indications of the availability of the menu
operations and their display within the user interface.

Referring again to FIGS. 8-10, for example, the second
OTP process of FIG. 14 can be used to determine whether the
‘Create’ operation is available for the ‘Check Configuration’
object type within different contexts. For the illustrative user
interface screen display of FIG. 8, for example, decision
module 1406 would have determined that the ‘Create’ opera-
tion is available for the ‘Check Configuration’ object type
within the context given for the user interface of FIG. 8, which
includes a user in the role of quality manager. Module 1408
would have returned to the IDE indications that the ‘Create’
operation is to be displayed in a menu of operations for the
‘Check Configuration’ object type. Referring to the user inter-
face display screen of FIG. 9, for example, module 1406
would have determined that the ‘Create’ operation is not
available for the ‘Check Configuration’ object type within the
context given for the user interface of FIG. 9, which includes
a user in the role of developer. Module 1406 also would have
determined that the ‘Create’ operation is to be displayed with
indicia that it is unavailable (i.e., displayed as grayed-out or
dimmed). Referring to the user interface display screen of
FIG. 10, for example, module 1406 would have determined
that the ‘Create’ operation is not available for the ‘Check
Configuration’ object type within the context given for the
user interface of FIG. 10, which includes a user in the role of
customer developer. Module 1406 also would have deter-
mined that the ‘Create’ operation is not to be displayed. In
FIG. 10, the absence of any visible indicia of the (unavailable)
‘Create’ operation is indicated by the empty space enclosed
within the dashed lines.

FIG. 15 is an illustrative flow diagram showing details of a
third OTP process performed in response to an IDE block
1120 requests for performance of menu operations for a
selected object type. It will be understood that a machine may
be configured with program code to implement acts repre-
sented by the illustrative modules of FIG. 15. In response to a
request from the IDE, which is responsive to a user request to
perform an operation indicated in a menu of operations, mod-
ule 1502 accesses a corresponding object type definition from
the object type definition database 1304. Referring to FIGS.
12A-12B, module 1502 uses OBJTYPE_REGISTRY table
information to retrieve the object type definition. Module
1502 accesses the OBJTYPE_SCOPES table and the OBJ-
TYPES_SCOPES_REQUIREMENTS table or accesses the
OBJTYPE_FUNCTIONS table and the OBITYPE_FUNC-
TIONS_REQUIREMENTS table of the retrieved object type
definition for the selected object type to determine which
processor tool is associated with the selected operation. Mod-
ule 1504 returns to the IDE an indication of the processor tool
to be used to perform the selected operation.

Hardware Environment

FIG. 16 is a block diagram of a computer processing sys-
tem within which a set of instructions, for causing the com-
puter to perform any one or more of the methodologies dis-
cussed herein, may be executed. In some embodiments, the
computer operates as a standalone device or may be con-
nected (e.g., networked) to other computers. In a networked
deployment, the computer may operate in the capacity of a
server or a client computer in server-client network environ-
ment, or as a peer computer in a peer-to-peer (or distributed)
network environment. In a networked deployment, the com-
puter may operate in the capacity of a server or a client



US 8,869,052 B2

13

computer in a server-client network environment, or as a peer
computer in a peer-to-peer (or distributed) network environ-
ment.

Embodiments may also, for example, be deployed by Soft-
ware-as-a-Service (SaaS), Application Service Provider
(ASP), or utility computing providers, in addition to being
sold or licensed via traditional channels. The computer may
be a server computer, a personal computer (PC), a tablet PC,
a set-top box (STB), a Personal Digital Assistant (PDA),
cellular telephone, or any processing device capable of
executing a set of instructions (sequential or otherwise) that
specify actions to be taken by that device. Further, while only
a single computer is illustrated, the term “computer” shall
also be taken to include any collection of computers that
individually or jointly execute a set (or multiple sets) of
instructions to perform any one or more of the methodologies
discussed herein.

The example computer processing system 1600 includes
processor 1602 (e.g., a central processing unit (CPU), a
graphics processing unit (GPU) or both), main memory 1604
and static memory 1606, which communicate with each other
via bus 1608. The processing system 1600 may further
include video display unit 1610 (e.g., a plasma display, a
liquid crystal display (LCD) or a cathode ray tube (CRT)).
The processing system 1600 also includes alphanumeric
input device 1612 (e.g., a keyboard), a user interface (UI)
navigation device 1614 (e.g., a mouse, touch screen, or the
like), a mass storage disk drive unit 1616, a signal generation
device 1618 (e.g., a speaker), and a network interface device
1620.

The disk drive unit 1616 includes computer-readable
medium 1622 on which is stored one or more sets of instruc-
tions and data structures (e.g., software 1624) embodying or
utilized by any one or more of the methodologies or functions
described herein. The software 1624 may also reside, com-
pletely or at least partially, within the main memory 1604
and/or within the processor 1602 during execution thereof by
the processing system 1600, the main memory 1604 and the
processor 1602 also constituting computer-readable, tangible
media.

Object types database 1304 may be stored persistently in
mass storage 1304, for example. Context information 1308
can be saved in main memory 1604, for example. Program
code corresponding to processes of FIGS. 11 and 13-15 may
be encoded in main memory 1604 when the processes run on
processor 1602, for example.

The software 1624 may further be transmitted or received
over network 1626 via a network interface device 1620 uti-
lizing any one of a number of well-known transfer protocols
(e.g., HTTP).

While the computer-readable medium 1622 is shown in an
example embodiment to be a single medium, the term “com-
puter-readable medium” should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of instructions. The term “computer-read-
able medium” shall also be taken to include any medium that
is capable of storing, encoding or carrying a set of instructions
for execution by the computer and that cause the computer to
perform any one or more of the methodologies of the present
application, or that is capable of storing, encoding or carrying
data structures utilized by or associated with such a set of
instructions. The term “computer-readable medium” shall
accordingly be taken to include, but not be limited to, solid-
state memories, and optical and magnetic media.

While the invention(s) is (are) described with reference to
various implementations and exploitations, it will be under-

20

25

30

35

40

45

50

55

60

14

stood that these embodiments are illustrative and that the
scope of the invention(s) is not limited to them. In general,
techniques for maintaining consistency between data struc-
tures may be implemented with facilities consistent with any
hardware system or hardware systems defined herein. Many
variations, modifications, additions, and improvements are
possible.

Plural instances may be provided for components, opera-
tions or structures described herein as a single instance.
Finally, boundaries between various components, operations,
and data stores are somewhat arbitrary, and particular opera-
tions are illustrated in the context of specific illustrative con-
figurations. Other allocations of functionality are envisioned
and may fall within the scope of the invention(s). In general,
structures and functionality presented as separate compo-
nents in the exemplary configurations may be implemented as
a combined structure or component. Similarly, structures and
functionality presented as a single component may be imple-
mented as separate components. These and other variations,
modifications, additions, and improvements fall within the
scope of the invention(s).

The invention claimed is:

1. A method to display indicia of an object type foraservice
within a user interface of a software development system that
runs on a computer comprising:

obtaining runtime context information that includes an
identification of a respective service and an indication of
a user role;

providing in a non-transitory computer readable storage
device an object type information structure that
includes,

aplurality of respective first object types that correspond to
respective visual indicia in the user interface and that
indicate respective context information dependent rules
for determining whether to include display of the respec-
tive visual indicia in a user interface,

a plurality of respective second object types that corre-
spond to respective user menu operations associated
with respective visual indicia in the user interface and
that indicate respective context information dependent
rules for determining whether to include display of the
respective user menu operations in a user interface, and

a plurality of respective third object types that indicate
respective context information dependent rules for dis-
play position of the respective visual indicia and/or for
display position of the respective menu operations in a
user interface;

using a computer to apply the runtime context information
to the respective context dependent rules indicated
within the object type information structure to determine
which respective visual indicia to display, to determine
which menu operations to display and to determine posi-
tions of one or more of the visual indicia and menu
operations in a user interface; and

generating a user interface that displays the visual indicia
and the menu operations and their positions according to
the determinations made using the runtime context
information and the respective context dependent rules;

wherein generating the user interface includes generating a
display that includes one or more user menu operations
in response to receiving user input indicating user selec-
tion of a respective displayed visual indicia.

2. The method of claim 1 further including:

omitting from the generated user interface respective
visual indicia that correspond to respective first object
types that were not determined, according to the context
information dependent rules for determining whether to



US 8,869,052 B2

15

include display of the respective visual indicia in a user
interface, to be within the scope of the identified service.

3. The method of claim 1,

wherein the information structure associates respective

first object types with respective services and with
respective processing tools that correspond to respective
services; and further including:

receiving a user selection of a respective visual indicia

indicated within the generated user interface that corre-
sponds to a respective first object type; and

using the computer to access the respective corresponding

first object type and to call a respective processing tool
associated with corresponding first object type by the
information structure to correspond to the identified ser-
vice.

4. The method of claim 1, wherein the generated user menu
includes at least one indication that a respective user opera-
tion is determined to not be available for the indicated user
role.

5. The method of claim 1 further including:

omitting from the generated user menu at least one indica-

tion of a respective user operation not determined to be
available for the indicated user role.

6. The method of claim 1, wherein the information struc-
ture associates respective processing tools with respective
operations; and further including: receiving a user selection
of'arespective menu operation displayed within the generated
user interface; and using the computer to access a respective
information structure to identify a respective processing tool
associated with the selected operation and to call the respec-
tive identified processing tool.

7. The method of claim 1,

wherein generating the user interface includes generating

the visual indicia in a first determined position in
response to first context information and generating the
visual indicia in a second determined position in
response to second context information.

8. An article of manufacture that includes a non-transitory
computer readable storage device encoded with program
code to cause a computer system to perform a process that
includes:

obtaining runtime context information that includes an

identification of a respective service and an indication of

a user role;

providing in non-transitory a computer readable storage
device an object type information structure that
includes,

aplurality of respective first object types that correspond to
respective visual indicia in the user interface and that
indicate respective context information dependent rules
for determining whether to include display of the respec-
tive visual indicia in a user interface,

a plurality of respective second object types that corre-
spond to respective user menu operations associated
with respective visual indicia in the user interface and
that indicate respective context information dependent
rules for determining whether to include display of the
respective user menu operations in a user interface, and

a plurality of respective third object types that indicate
respective context information dependent rules for dis-
play position of the respective visual indicia and/or for
display position of the respective menu operations in a
user interface;

using a computer to apply the runtime context information
to the respective context dependent rules indicated
within the object type information structure to determine
which respective visual indicia to display, to determine

5

20

25

30

35

40

45

50

55

60

16

which menu operations to display and to determine posi-
tions of one or more of the visual indicia and menu
operations in a user interface; and

generating a user interface that displays the visual indicia
and the menu operations and their positions according to
the determinations made using the runtime context
information and the respective context dependent rules;

wherein generating the user interface includes generating a
display that includes one or more user menu operations,
according to the context information dependent rules for
determining whether to include display of the respective
user menu operations in a user interface, in response to
receiving user input indicating user selection of arespec-
tive displayed visual indicia.

9. The article of manufacture of claim 8,

wherein generating the user interface includes generating a
menu operations available for the indicated user role, in
response to receiving user input indicating user selection
of a respective displayed visual indicia, displaying one
or more menu operations according to a determination
made using the runtime context information and the
respective context dependent rules.

10. The article of manufacture of claim 8,

wherein generating the user interface includes generating
the visual indicia in a first determined position in
response to first context information and generating the
visual indicia in a second determined position in
response to second context information.

11. A computer system comprising:

a processor;

a storage device to store instructions that, when executed
by the processor cause the processor to:

obtain runtime context information that includes an iden-
tification of a respective service and an indication of a
user role;

provide in a non-transitory computer readable storage
device an object type information structure that
includes,

aplurality of respective first object types that correspond to
respective visual indicia in the user interface and that
indicate respective context information dependent rules
for determining whether to include display of the respec-
tive visual indicia in a user interface,

a plurality of respective second object types that corre-
spond to respective user menu operations associated
with respective visual indicia in the user interface and
that indicate respective context information dependent
rules for determining whether to include display of the
respective user menu operations in a user interface, and

a plurality of respective third object types that indicate
respective context information dependent rules for dis-
play position of the respective visual indicia and/or for
display position of the respective menu operations in a
user interface;

apply the runtime context information to the respective
context dependent rules indicated within the object type
information structure to determine which respective
visual indicia to display, to determine which menu
operations to display and to determine positions of one
or more of the visual indicia and menu operations in a
user interface; and

a user interface display screen that displays the visual
indicia and the menu operations and their positions
according to the determinations made using the runtime
context information and the respective context depen-
dent rules



US 8,869,052 B2

17

wherein the user interface display screen displays the menu
operations, according to the context information depen-
dent rules for determining whether to include display of
the respective user menu operations in a user interface,
in response to receiving user input indicating user selec-
tion of a respective displayed visual indicia.

12. The computer system of claim 11,

auser interface display screen that includes a user menu of
operations determined using the runtime context infor-
mation and the respective context dependent rules, in
response to receiving user input indicating user selection
of a respective displayed visual indicia.

13. The computer system of claim 11,

wherein generating the user interface includes generating
the visual indicia in a first determined position in
response to first context information and generating the
visual indicia in a second determined position in
response to second context information;

a user interface display screen that includes visual indicia
in a first determined position in response to first context
information and generating the visual indicia in a second
determined position in response to second context infor-
mation.

20

18



